

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-7855 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information 1/ SHF14_ L Screening^{2/} = None TX = TX Level TXV = TXV Level S = S Level Package = Axial Leaded SMS = Surface Mount Square Tab Voltage 02 = 200 V03 = 300 V04 = 400 V05 = 500 V06 = 600 V

SHF1402 - SHF1406 and SHF1402SMS - SHF1406SMS

4 AMP
200–600 Volts
30 nsec
HYPER FAST RECTIFIER

Features:

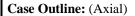
- Guaranteed High Temp. trr: 50 nsec Max (Axial) trr: 60nsec Max (SMS)
- Hyper Fast Recovery: 30 nsec Max.
- PIV to 600 Volts
- Void Free Construction
- · Hermetically Sealed
- Low Reverse Leakage Current
- For High Efficiency Applications
- Replacement for 1N6626 Series where faster trr is required
- TX, TXV, and S-Level Screening Available^{2/}

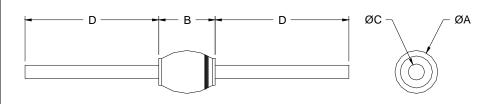
Maximum Ratings		Symbol	Value	Units	
Peak Repetitive Reverse and DC Blocking Voltage SHF1402 SHF1403 SHF1404 SHF1405 SHF1406		$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	200 300 400 500 600	Volts	
Average Rectified Forward Current (Resistive Load, 60 Hz Sine Wave, T _A = 55°C, L=3/8")		Io	4	Amps	
Surge Current (Single 8.3 ms Pulse, Half Sine Superimposed on Io, $T_A = 55$ °C)		$\mathbf{I}_{ ext{FSM}}$	75	Amps	
Repetitive Peak Surge Current (8.3 ms Pulse, Half Sine Wave Superimposed on Io, Allow Junction to Reach Equilibrium Between Pulses, $T_A = 55^{\circ}C$)			I_{FRM}	20	Amps
Operating & Storage Temperature		Top & Tstg	-65 to +175	°C	
Maximum Thermal Resistance	Junctio	n to Lead, L = 3/8 " Junction to End	$R_{ heta m JL} \ R_{ heta m JE}$	20 14	°C/W

Notes:

 I/ For Ordering Information, Price, Operating Curves, and Availability – Contact Factory.
 Screening Based on MIL-PRF-19500. Screening Flows Available on Request. **Axial Leaded**

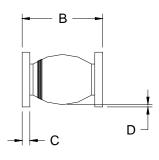
SMS (Square)

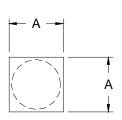



Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SHF1402 - SHF1406 and SHF1402SMS - SHF1406SMS


Electrical Characteristics	Symbol	Max	Units
Instantaneous Forward Voltage Drop $(I_F = 3 \text{ Adc}, T_A = 25^{\circ}\text{C}, 300 \mu\text{s} \text{pulse})$	$ m V_F$	1.5	Vdc
Instantaneous Forward Voltage Drop $(I_F = 4 \text{ Adc}, T_A = 25^{\circ}\text{C}, 300 \mu\text{s} \text{pulse})$	$\mathbf{V_F}$	1.6	Vdc
Reverse Leakage Current (Rated V_R , $T_A = 25^{\circ}C$, 300 μ s pulse minimum)	I_R	10	μА
Reverse Leakage Current (Rated V_R , $T_A = 100^{\circ}$ C, 300 µs pulse minimum)	I_R	1	mA
Junction Capacitance (V _R = 10 Vdc, T _A = 25°C, f = 1MHz)	C_{J}	50	pF
Reverse Recovery Time $(I_F = 500 \text{ mA}, I_R = 1 \text{A}, I_{RR} = 0.25 \text{A}, T_A = 25 ^{\circ}\text{C})$ $(I_F = 500 \text{ mA}, I_R = 1 \text{A}, I_{RR} = 0.25 \text{A}, T_A = 100 ^{\circ}\text{C})$	t _{rr}	30 60	nsec



DIMENSIONS					
DIM	MIN	MAX			
A	.140"	.170"			
В	.170"	.230"			
С	.047"	.053"			
D	1.00"				

Case Outline: (SMS)

DIMENSIONS				
DIM	MIN	MAX		
A	.172"	.180"		
В	.220"	.270"		
С	.022"	.028"		
D	.002"			